B501 Assignment 6 Enrique Areyan

Due Date: Friday, April 13, 2012
 Due Time: 11:00pm

For the following questions, $\Sigma=\{0,1\}$

1. (10 points) Let $T=\left\{\langle M\rangle \mid M\right.$ is a TM that accepts w^{R} whenever it accepts $w\}$. Use reduction to show that T is undecidable. $\left(w^{R}\right.$ is the reverse of w)
Solution: To proof that T is undecidable, we could use the reduction $A_{T M} \leq_{m} T$. So, a decider for T will yield a decider for $A_{T M}$, but we know that $A_{T M}$ is undecidable. Therefore, let's work under the assumption that T is decidable and build a decider for $A_{T M}$. Let R be the decider for T. Consider the following machine:

M1 on input $w 1$: "

1. if input is not in the set: $\{01,10\}$, reject.
2. if input is 01 , accept.
3. if input is 10 , run machine M on input w and accept if M accepts. if M halts and reject, then reject."
The following machines H decides $A_{T M}$:
H on input $\langle M, w\rangle$: "
4. Run machine R on input $\langle M 1\rangle$ and accept if R accepts, or reject if R rejects."
$L(M 1)=\{01,10\}$ if M accepts w and $\{01\}$ otherwise. Machine R decides T, so it will know when to accept or reject $\langle M 1\rangle$. Using this capability, machine H decides $A_{T M}$ which we know to be undecidable. Therefore, there exists no such machine R and the language T is undecidable.

The mapping reduction lies in this proof, i.e.,

$$
\langle M, w\rangle \in A_{T M} \Longleftrightarrow\langle M 1\rangle \in T
$$

2. (10 points) A useless state in a Turing machine is one that is never entered on any input string. Consider the problem of determining whether a Turing machine has any useless states. Formulate this problem as a language and use reduction to show that it is undecidable.

Solution: We want to show that the following language is undecidable:

$$
S=\{\langle M, q\rangle \mid M \text { is a TM and } q \text { is a useless state in } M\}
$$

Suppose that there is a decider R for language S. In this case it will be easier to reduce $E_{T M}$ to S. We can do so as follow: first, we reason that a TM is in $E_{T M}$ if and only if its accept state is useless. More succinctly, $\langle M\rangle \in E_{T M} \Longleftrightarrow q_{\text {accept }}$ of M is useless. So, if we have a machine to determine if a TM has useless state, we can easily decide $E_{T M}$ with the following decider D :
D on input x : "

1. Run machine R on input $\left\langle M, q_{\text {accept }}\right\rangle$. If R accepts, then accept.
2. If R rejects, then rejects"

Machine D decides $E_{T M}$ which we know to be undecidable by theorem 5.4. Therefore, machine R does not exists and S is undecidable.

The mapping reduction lies in this proof, i.e.,

$$
\langle M\rangle \in E_{T M} \Longleftrightarrow\left\langle M, q_{a c c e p t}\right\rangle \in S
$$

3. (30 points) For each of the following languages, determine whether it is decidable and prove your statement. You can use Rice's theorem.
(a) $\{\langle M\rangle \mid \mathrm{TM} M$ visits the 10 th cell of its tape while processing input string '01’\}

Solution: This language is decidable. Here is an idea for a decider:
Given $\langle M, 01\rangle$, simulate M on 01, i.e., simulate two steps of the machine. While simulating M on the universal turing machine we keep track of the cell position currently being visited by the head of machine M. We essentially keep a counter of the times we move to the right and decrease the number if we move to the left, until we reach zero in which case we know we are on the first position. If we ever find the counter to indicate that we are in cell 10, then accept, else we reject.
(b) $\left\{\langle M\rangle \mid M\right.$ is a TM and ' $\left.1111^{\prime} \in L(M)\right\}$

Solution: Using Rice's theorem: first, it is obvious that there exists machines that accept 111 and others that don't. In particular, we can always construct a machine that accept only 111 and reject everything else and another that accepts everything except 111 (this is a finite string, so constructing these machines is equivalent to constructing a DFA and we know that DFA $\subset \mathrm{TM}$).

Now, suppose we have two machines M_{1} and M_{2} such that $L(M 1)=$ $L(M 2)$. The following holds:
$\left\langle M_{1}\right\rangle$ possesses property $P \Longleftrightarrow\left\langle M_{1}\right\rangle$ such that $111 \in L\left(M_{1}\right) \Longleftrightarrow$

$$
111 \in L\left(M_{2}\right) \Longleftrightarrow\left\langle M_{2}\right\rangle \text { possesses property } P
$$

Rice's theorem hold and we can safely conclude that the above language is not decidable.
(c) $A l l_{T M}=\left\{\langle M\rangle \mid M\right.$ is a TM and $\left.L(M)=\Sigma^{*}\right\}$

Solution: Using Rice's theorem: first, it is obvious that there exits machines that are in $A l l_{T M}$ and other machines that are not in $A l l_{T M}$., i.e., the property that $L(M)=\Sigma^{*}$ is not trivial.

Now, suppose we have two machines M_{1} and M_{2} such that $L(M 1)=$ $L(M 2)$. The following holds:

$$
\left\langle M_{1}\right\rangle \in A l l_{T M} \Longleftrightarrow L\left(M_{1}\right)=\Sigma^{*}=L\left(M_{2}\right) \Longleftrightarrow\left\langle M_{2}\right\rangle \in A l l_{T M}
$$

Rice's theorem hold and we can safely conclude that $A l l_{T M}$ is not decidable.

